MOS管-源边感抗的影响及驱动(直连或耦合)的重要特性-KIA MOS管
分析源边感抗带来的影响
1.使得MOS管的开启延迟和关断延迟增加
由于存在源边电感,在开启和关段初期,电流的变化被拽了,使得充电和放电的时间变长了。
同时源边感抗和等效输入电容之间会发生谐振(这个谐振是由于驱动电压的快速变压形成的,也是我们在G端看到震荡尖峰的原因),我们加入的门电阻Rg和内部的栅极电阻Rm都会抑制这个震荡(震荡的Q值非常高)。
我们需要加入的优化电阻的值可以通过上述的公式选取,如果电阻过大则会引起G端电压的过冲(优点是加快了开启的过程),电阻过小则会使得开启过程变得很慢,加大了开启的时间(虽然G端电压会被抑制)。
源边感抗另外一个影响是阻碍Id的变化,当开启的时候,初始时di/dt偏大,因此在源边感抗上产生了较大压降,从而使得源点点位抬高,使得Vg电压大部分加在电感上面,因此使得G点的电压变化减小,进而形成了一种平衡(负反馈系统)
另外一个重要的寄生参数是漏极的感抗,主要是有内部的封装电感以及连接的电感所组成。
在开启状态的时候Ld起到了很好的作用(Subber吸收的作用),开启的时候由于Ld的作用,有效的限制了di/dt/(同时减少了开启的功耗)。在关断的时候,由于Ld的作用,Vds电压形成明显的下冲(负压)并显著的增加了关断时候的功耗。
驱动(直连或耦合)的重要特性和典型环节:
直连电路最大挑战是优化布局
实际上驱动器和MOS管一般离开很远,因此在源级到返回路径的环路上存在很大的感抗,即使我们考虑使用地平面,那么我们仍旧需要一段很粗的PCB线连接源级和地平面。
另外一个问题是大部分的集成芯片的输出电流都比较小,因为由于控制频率较高,晶圆大小受到限制。同时内部功耗很高也导致了IC的成本较高,因此我们需要一些扩展分立的电路。
旁路电容的大小
由于开启的瞬间,MOS管需要吸取大量的电流,因此旁路电容需要尽可能的贴近驱动器电源端。
有两个电流需要我们去考虑:第一个是驱动器静态电流,它收到输入状态的影响。他可以产生一个和占空比相关的纹波。
另外一个是G极电流,MOS管开通的时候,充电电流时将旁路电流的能量传输至MOS管输入电容上。其纹波大小可用公式来表明,最后两个可合在一起。
驱动器保护
如果驱动器输出级为晶体管,那么我们还需要适当的保护来防止反向电流。一般为了成本考虑,我们采用NPN的输出级电路。NPN管子只能承受单向电流,高边的管子输出电流,低边的管子吸收电流。
在开启和关闭的时候,无可避免的源感抗和输入电容之间的振荡使得电流需要上下两个方向都有通路,为了提供一条方向通路,低电压的肖特基二极管可以用来保护驱动器的输出级,这里注意这两个管子并不能保护MOS管的输入级(离MOS管较远),因此二极管需要离驱动器引脚非常近。
晶体管的图腾柱结构
这是最便宜和有效地驱动方式,此电路需要尽量考虑MOS管,这样可以使得开启时大电流环路尽可能小,并且此电路需要专门的旁路电容。
Rgate是可选的,Rb可以根据晶体管的放大倍数来选择。两个BE之间的PN结有效的实现了反压时候的相互保护,并能有效的把电压嵌位在VCC+Vbe,GND-Vbe之间。
联系方式:邹先生
联系电话:0755-83888366-8022
手机:18123972950
QQ:2880195519
联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1
请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号
请“关注”官方微信公众号:提供 MOS管 技术帮助