广东可易亚半导体科技有限公司

国家高新企业

cn en

新闻中心

MOS管、晶体管有何区别?详解-KIA MOS管

信息来源:本站 日期:2021-05-07 

分享到:

MOS管、晶体管有何区别?详解-KIA MOS管


详解MOS管、晶体管

什么是MOS管

mos管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。


MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。


什么是晶体管

严格意义上讲,晶体管泛指一切以半导体材料为基础的单一元件,包括各种半导体材料制成的二极管、三极管、场效应管、可控硅等。晶体管有时多指晶体三极管。


晶体管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET)。


晶体管有三个极;双极性晶体管的三个极,分别由N型跟P型组成发射极(Emitter)、基极(Base) 和集电极(Collector);场效应晶体管的三个极,分别是源极(Source)、栅极(Gate)和漏极(Drain)。


晶体管因为有三种极性,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称共基放大、CB组态)和集电极接地(又称共集放大、CC组态、发射极随耦器)。


MOS管晶体管


材料

按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。


工艺

晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。


电流容量

晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。


工作频率

晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。


封装结构

晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。


按功能和用途

晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。


晶体管种类分析

半导体三极管

是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。


输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。


TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件。半导体三极管是电路中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。


电力晶体管

电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;


其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。


光晶体管

光晶体管(phototransistor)由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益。


光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(GaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。


双极型光晶体管通常增益很高,但速度不太快,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。


场效应光晶体管响应速度快(约为50皮秒),但缺点是光敏面积小,增益小(放大系数可大于10),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。这类器件可望在光电集成中得到应用。


双极晶体管

双极晶体管(bipolar transistor)指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。


双极结型

“双极”的含义是指其工作时电子和空穴这两种载流子都同时参与运动。


双极结型晶体管(Bipolar Junction Transistor—BJT)又称为半导体三极管,它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN两种组合结构;


外部引出三个极:集电极,发射极和基极,集电极从集电区引出,发射极从发射区引出,基极从基区引出(基区在中间);


BJT有放大作用,重要依靠它的发射极电流能够通过基区传输到达集电区而实现的,为了保证这一传输过程,一方面要满足内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小,另一方面要满足外部条件,即发射结要正向偏置(加正向电压)、集电结要反偏置;


BJT种类很多,按照频率分,有高频管,低频管,按照功率分,有小、中、大功率管,按照半导体材料分,有硅管和锗管等;其构成的放大电路形式有:共发射极、共基极和共集电极放大电路。


MOS管晶体管


场效应晶体管

“场效应”的含义是这种晶体管的工作原理是基于半导体的电场效应的。


场效应晶体管(field effect transistor)利用场效应原理工作的晶体管,英文简称FET。场效应晶体管又包含两种主要类型:结型场效应管(Junction FET,缩写为JFET)和金属-氧化物半导体场效应管(Metal-Oxide Semiconductor FET,缩写为MOS-FET)。


与BJT不同的是,FET只由一种载流子(多数载流子)参与导电,因此也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点。


MOS管晶体管


静电感应

静电感应晶体管SIT(Static Induction Transistor)诞生于1970年,实际上是一种结型场效应晶体管。将用于信息处理的小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件。


SIT是一种多子导电的器MOSFET相当,甚至超过电力MOSFET,而功率容量也比电力MOSFET大,因而适用于高频大功率场合,目前已在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等某些专业领域获得了较多的应用。


MOS管晶体管


单电子晶体管

用一个或者少量电子就能记录信号的晶体管。随着半导体刻蚀技术和工艺的发展,大规模集成电路的集成度越来越高。


以动态随机存储器(DRAM)为例,它的集成度差不多以每两年增加四倍的速度发展,预计单电子晶体管将是最终的目标。


目前一般的存储器每个存储元包含了20万个电子,而单电子晶体管每个存储元只包含了一个或少量电子,因此它将大大降低功耗,提高集成电路的集成度。1989年斯各特(J.H. F.Scott-Thomas)等人在实验上发现了库仑阻塞现象。


IGBT

绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(Power MOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。


晶体管的主要参数指标

放大系数

直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。


耗散功率

耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。


特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。


最高频率fM

最高振荡频率是指晶体管的功率增益降为1时所对应的频率。


最大电流

集电极最大电流(ICM)是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。


最大反向电压

最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。


MOS管的主要特性

导通电阻的降低

INFINEON的内建横向电场的MOSFET,耐压600V和800V,与常规MOSFET器件相比,相同的管芯面积,导通电阻分别下 降到常规MOSFET的1/5, 1/10;相同的额定电流,导通电阻分别下降到1/2和约1/3。


在额定结温、额定电流条件下,导通电压分别从12.6V,19.1V下降到 6.07V,7.5V;导通损耗下降到常规MOSFET的1/2和1/3。由于导通损耗的降低,发热减少,器件相对较凉,故称COOLMOS。


封装的减小和热阻的降低

相同额定电流的COOLMOS的管芯较常规MOSFET减小到1/3和1/4,使封装减小两个管壳规格。由于COOLMOS管芯厚度仅为常规MOSFET的1/3,使TO-220封装RTHJC从常规1℃/W降到0.6℃/W;额定功率从125W上升到208W,使管芯散热能力提高。


开关特性的改善

COOLMOS的栅极电荷与开关参数均优于常规MOSFET,很明显,由于QG,特别是QGD的减少,使COOLMOS的开关时间约为常 规MOSFET的1/2;开关损耗降低约50%。关断时间的下降也与COOLMOS内部低栅极电阻(<1Ω=有关。


抗雪崩击穿能力与SCSOA

目前,新型的MOSFET无一例外地具有抗雪崩击穿能力。COOLMOS同样具有抗雪崩能力。在相同额定电流 下,COOLMOS的IAS与ID25℃相同。但由于管芯面积的减小,IAS小于常规MOSFET,而具有相同管芯面积时,IAS和EAS则均大于常规 MOSFET。


COOLMOS的最大特点之一就是它具有短路安全工作区(SCSOA),而常规MOS不具备这个特性。


COOLMOS的SCSOA的获得主要是由于转移特性的变化和管芯热阻降低。COOLMOS的转移特性如图所示。从图可以看到,当VGS>8V 时,COOLMOS的漏极电流不再增加,呈恒流状态。


特别是在结温升高时,恒流值下降,在最高结温时,约为ID25℃的2倍,即正常工作电流的3-3.5 倍。


在短路状态下,漏极电流不会因栅极的15V驱动电压而上升到不可容忍的十几倍的ID25℃,使COOLMOS在短路时所耗散的功率限制在 350V×2ID25℃,尽可能地减少短路时管芯发热。


管芯热阻降低可使管芯产生的热量迅速地散发到管壳,抑制了管芯温度的上升速度。因 此,COOLMOS可在正常栅极电压驱动,在0.6VDSS电源电压下承受10ΜS短路冲击,时间间隔大于1S,1000次不损坏,使COOLMOS可像 IGBT一样,在短路时得到有效的保护。


MOS管晶体管



联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950

QQ:2880195519

联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供  MOS管  技术帮助