广东可易亚半导体科技有限公司

国家高新企业

cn en

应用领域

【电源电路】PMOS防浪涌抑制电路分析-KIA MOS管

信息来源:本站 日期:2022-10-13 

分享到:

【电源电路】PMOS防浪涌抑制电路分析-KIA MOS管


防浪涌抑制电路分析

电路原理

下图是PMOS防浪涌电路的简化原理图。


首先说为什么采用PMOS,因为负压开通,可与输入共地,若采用NMOS,可就需要charge bump才能导通了。


PMOS 防浪涌 电路


此电路的原理:

防浪涌抑制电路的基本原理是利用场效应管的电流放大特性,控制输入电流从0逐渐增加,缓慢的为输出侧电容充电,直至场效应管完全导通,从而避免由于输出侧电容的瞬间短路特性导致产生的大电流。


工作过程主要分为三个阶段,上电阶段,C1充电阶段,Cin充电阶段。


1. 上电阶段

上电瞬间,电容C1短路,PMOS管Q1的SG两端电压为0,Q1不导通,SD两端阻抗无穷大,Cin上无电流。


2. C1充电阶段

输入给C1充电,充电时间常数约为R2*C1。随着C1的充电,Q1的SG两端电压逐渐上升,当达到PMOS管的开启电压Vth后,Q1导通。


3. Cin充电阶段

随着C1两端电压逐渐升高,Q1逐渐导通,管子上流过的电流逐渐增加,从而给Cin进行充电,充电时间常数为Rsd*Cin,Rsd为Q1导通时的等效电阻。


当C1两端的电压,达到R1两端在输入的分压时,充电结束。Cin两端的电压达到输入电压时,充电结束。


以上工作工程可由下图表示。Vc1是C1两端的电压。Vcin是Cin两端的电压,Icin是Cin流过的电流。


PMOS 防浪涌 电路


我们来关注下电流的波形,为什么会这样?从0增加到最大,斜率先增大,后减小,而后电流又快速下降。


我试图想从公式上推导,发现高阶微分方程太难解出了,还是感性的说吧。


PMOS上的电流其实主要与两条曲线有关,一个是mos的转移特性曲线,Vsg越大,-Id越大,那么电容充电电流的波形与转移特性一致,另一方面若不考虑mos阻抗的变化,当作常数R,那么随着电容电压增加,充电电流是越来越小的。


当两者达到一个平衡后,出现最大电流。不过电路中有寄生参数,应该不可能让ic的电流不可导,所以在极值点是平滑过渡的。


PMOS 防浪涌 电路


影响因素

RC参数的影响

要想电容充电电流小,充电慢,最简单的来说就是增大时间常数,包括mos管你都可以当作阻抗来考虑,最开始阻抗无穷大,完全导通阻抗几乎为0.


所以可以通过调节R2,C1可控制mos开启电压的上升速度,从而控制电流。当然在调节R2时,需同步调节R1,以确保电阻足够的功率降额或者足够的开启电压。


MOS参数的影响

实际上,PMOS参数的差异也会影响浪涌电流,比如转移特性和Vth。


1)转移特性的影响

不同的转移特性会导致相同的VSG下,导通电流的不同,如下图所示。


PMOS 防浪涌 电路


2)Vth的影响

不同的Vth会导致MOS导通时电流的上升速率不同。假设MOS的电流放大倍数相同,即转移特性曲线中斜率相同,Vth不同,导致相同VSG下,导通电流不同,Vth越小,导通电流越大。


PMOS 防浪涌 电路


MOS导通电流越大,Cin充电电流越大。而Cin总电荷量是一定的,由Q=CU=It可知,电流大,充电时间短,峰值电流大,而电流小,充电时间长,峰值电流小。


PMOS 防浪涌 电路


测试波形

结合实际浪涌电流波形进行分析。上电一段时间后,回路电流快速上升,等效输入电容充电,电流到达峰值后,由于电容电压上升到一定值,充电电流减小,而后后级电路启动,由于带载,电容电压被拉低,充电电流又会上升后回落,直到充电结束。


在电路参数不变的情况下,不同板卡测试结果不同,可能是由于MOS管差异导致,而MOS管的差异在实际应用中很难保证,所以建议调整C1,R2,R1,如增大C1或R2,R1,可减小浪涌电流。由于整个电路启动时间的要求,RC不能太大,浪涌电流时间一般保证在2ms左右。



联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950

QQ:2880195519

联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供  MOS管  技术帮助

免责声明:本网站部分文章或图片来源其它出处,如有侵权,请联系删除。