结电容,pn结电容,mos结电容详解-KIA MOS管
pn结电容
一块半导体晶体一侧掺杂成P型半导体,另一侧掺杂成N型半导体,中间二者相连的接触面称为PN结(英语:pn junction)。PN结是电子技术中许多元件,例如半导体二极管、双极性晶体管的物质基础。PN结电容分为两部分,势垒电容和扩散电容。
势垒电容
我们知道,P区空穴多,N区电子多,因为扩散,会在中间形成内建电场区。N区那边失去电子带正电荷,P区那边得到电子带负电荷。
当给PN结加上稳定的电压,那么稳定后,内建电场区的厚度也会稳定为一个值,也就是说内部电荷一定。如果PN结上的电压向反偏的方向增大,那么内建电场区厚度也增加,即内部电荷增多。反之,如果电压减小,那么内部电荷减少。
PN结两端电压变化,引起积累在中间区域的电荷数量的改变,从而呈现电容效应,这个电容就是势垒电容。
势垒宽度,也就是内建电场区的宽度,是与电压相关的。所以说,不同的电压下,势垒电容的大小也是不同的。
二极管在反偏时,势垒电容起主要作用,而正偏时,扩散电容起主要作用。
扩散电容
当有外加正向偏压时,在 p-n 结两侧的少子扩散区内,都有一定的少数载流子的积累,而且它们的密度随电压而变化,形成一个附加的电容效应,称为扩散电容。
当PN结加上正向电压,内部电场区被削弱,因为浓度差异,P区空穴向N区扩散,N区的电子向P区扩散。
扩散的空穴和电子在内部电场区相遇,会有部分空穴和电子复合而消失,也有部分没有消失。没有复合的空穴和电子穿过内部电场区,空穴进入N区,电子进入P区。
进入N区的空穴,并不是立马和N区的多子-电子复合消失,而是在一定的距离内,一部分继续扩散,一部分与N区的电子复合消失。
显然,N区中靠近内部电场区处的空穴浓度是最高的,距离N区越远,浓度越低,因为空穴不断复合消失。同理,P区也是一样,浓度随着远离内部电场区而逐渐降低。
当外部电压稳定不变的时候,最终P区中的电子,N区中的空穴浓度也是稳定的。也就是说,P区中存储了数量一定的电子,N区中存储了数量一定的空穴。如果外部电压不变,存储的电子和空穴数量就不会发生变化,也就是说稳定存储了一定的电荷。
但是,如果电压发生变化,比如正向电压降低,电流减小,单位时间内涌入N区中的空穴也会减小,这样N区中空穴浓度必然会降低。同理,P区中电子浓度也降低。所以,稳定后,存储的电子和空穴的数量想比之前会更少,也就是说存储的电荷就变少了。
电压变化,存储的电荷量也发生了变化,跟电容的表现一模一样,这电容就是扩散电容了。
势垒电容与扩散电容区别
联系:两者都具有电容效应
区别:势垒电容是由于空间电荷区的宽窄变化来产生的,而正偏的时候空间电荷区很窄,势垒电容很小,近似可以忽略,即势垒电容主要产生在pn结反偏时期;扩散电容是靠非平衡少子的扩散运动形成的浓度梯度产生的,反偏时主要是平衡少子在运动,耗尽层的宽度很宽,内建电场限制着非平衡少子的扩散运动,基本可以忽略,因此扩散运动主要产生在pn接正偏时期。
mos结电容
是半导体,就有PN结,有PN结,就有结电容。
尽管结电容的容量非常小,对电路稳定性的影响却是不容忽视的,处理不当往往会引起高频自激振荡。更为不利的是,栅控器件的驱动本来只需要一个控制电压而不需要控制功率,但是工作频率比较高的时候,结电容的存在会消耗可观的驱动功率,频率越高,消耗的功率越大。
这也就是我们通常认为,MOSFET的GS两极之间是一个高阻值的电阻,但是在设计开关电源的时候,我们通常需要加粗Gate极的PCB走线。保障在开关的过程中,驱动MOSFET的瞬间电流比较大,有足够的通流能力。这正是因为极间等效电容的存在。
联系方式:邹先生
联系电话:0755-83888366-8022
手机:18123972950
QQ:2880195519
联系地址:深圳市福田区金田路3037号金中环国际商务大厦2109
请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号
请“关注”官方微信公众号:提供 MOS管 技术帮助
免责声明:本网站部分文章或图片来源其它出处,如有侵权,请联系删除。