常用仪表放大器,运算放大器电路图-KIA MOS管
常用仪表放大器介绍
仪表放大器主要是放大电压信号的作用。
OP07基本放大电路
基本运算放大器用法,放大倍数34(G=RI33/RI34=68/2=34)
三运放仪表放大器
第一级电路让共模信号有效地通过,没有任何放大或衰减,第二级差动放大器将共模信号去除。由于额外提升了差分增益,虽然电阻器的匹配状况并没有改善,但是系统的有效共模抑制能力却得到了增强。
在实际应用中需要注意:
1)必须在第一级提供增益;
2)系统的共模抑制不是由前两个放大器的共模抑制比性能决定的,而是取决于两个共模抑制的匹配程度。然而双运算放大器从来不会给出这一指标,因此选择时必须要求CMRR性能指标比需要的目标性能指标至少好6 dB;
3)如果电阻器有某些对地的泄露通路,CMRR指标就会降低;
4)仪表放大器前面的元件要尽可能设计得平衡。如果仪表放大器同相通路中低通滤波器和反相通路中低通滤波器具有不同截止频率,系统的CMRR特性将会随着频率的升高而降低。
对于仪表放大器的第一级,每个运算放大器都要保持其两个电压输入端的电压相同。图中R4两端的差分电压应当和两个输入端的电压相同,这个电压产生一个电流,流过电阻器R3并产生了放大器的增益。
三运放仪表放大器通常会遇到的问题有:
1)这一结构放大差分信号,然后去除共模信号。两级电路之间的中间节点载荷着大约一半的差分信号再加上共模信号。须确保这个信号处于运放的工作范围之内。当改变输入电压的共模成分时,如果看到类似于饱和的现象,则应首先检查这里。
2)流过R4的电流。当把仪表放大器的增益设置得很高时,R4就会很小,这意味着差分电压很大的时候,R4上产生的电流也会相当大。需要检查这种情况对系统是否有负面作用。
3)反馈通路中的电容。反馈通路的走线应尽可能地短,反馈通路过大的电容在高频时会使共模抑制比性能降低。
两运放仪表放大器
如果不需要三运放结构如此高的性能,可使用两运放结构进行简化。这种结构的主要优点是结构简单,它只需要两个运算放大器和四个电阻器,如图所示。由于很少有包含三个运放的器件,因此三运放结构通常需要使用一个四运放器件。而多余的一个运放需要消耗更多的功率,所以两运放结构在能耗方面也会更低。
此外,和三运放结构一样,两运放结构电路也具有很高的输入阻抗。但是两运放仪表放大器的性能要差一些,通过计算分析,这种结构的共模抑制比对电阻器阻值变化的灵敏度比差分放大器结构略高一些。最坏情况下,对于0.1%的电阻器匹配条件下的CMRR不是54 dB,而是50.5 dB。与三运放仪表放大器不同的是这个CMRR数值不随增益的增加而改善。由于两个通路不平衡,同相通路信号的频率响应与反相通路信号不同。由于反相通路要通过两级电路而不是一级电路,因此在反相通路中出现了一个相位延迟,并且压摆率和带宽特性也会不同,其噪声性能也会差一些。
两运放仪表放大器常见的问题是:
1)由于第一级的输出电压即放大了的输入电压,其中包括共模电压,因此需要注意第一级的输出电压;
2)由于两运放仪表放大器的CMRR对于电阻的匹配情况极为敏感,因此需要注意电阻器的匹配;
3)高频性能。因此,对于这三种结构来说:差动放大器 这种放大器很好,也很简单,只需要一个运算放大器和四个电阻器。然而,它的输入阻抗与所选电阻器的数值有关,而且噪声和CMRR的性能也较差。
2)三运放仪表放大器 第一级电路提供高输入阻抗。当我们在第一级电路中引入增益时,还提高了噪声和CMRR的性能。
两运放结构仪表放大器 这种电路结构比三运放结构简单得多,并且也具有很好的输入阻抗特性。然而,其噪声和CMRR性能不能随着增益的增加而改善。
联系方式:邹先生
联系电话:0755-83888366-8022
手机:18123972950(微信同号)
QQ:2880195519
联系地址:深圳市福田区金田路3037号金中环国际商务大厦2109
请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号
请“关注”官方微信公众号:提供 MOS管 技术帮助
免责声明:本网站部分文章或图片来源其它出处,如有侵权,请联系删除。